The European world view began to change dramatically following the establishment of an observatory at Sagnes, Portugal, in 1420 by Prince Henry the Navigator. During the ensuing century and a half the crowned heads of Portugal and Spain dispatched numerous overseas voyages in search of sea routes to the Spice Islands and the riches of the Orient. Other maritime powers soon followed: Portuguese, Spanish, Italian, and English pilots and navigators explored the world’s major islands and the coasts and largest navigable rivers of Africa, Asia, and the Americas.

News of these new worlds and new people flowed back to Europe to challenge the cosmographic beliefs favored by the church fathers as well as the rediscovered geographical works of Claudius Ptolemy and other ancient Classical Greek astronomers and geographers. Maps played a major role in this information transfer, serving as unique media for storing spatially arrayed data and providing unmatched representation of geographical realities. Inspired in part by Dutch art, the graphic value of maps was further enhanced during the Renaissance with the addition of pictorial renderings of indigenous peoples, places, and artifacts derived from direct observations. Johann Gutenberg’s invention of printing by moveable type in the 1430s and the development of large-format woodcut and copperplate engraving techniques four decades later ensured that this new information was widely distributed and preserved.

A number of these contemporary atlases, maps, geographies, and geographical dictionaries and gazetteers are found in the Jay I. Kislak Collection. The materials relate primarily to the early discovery period and the Caribbean region, but a number of documents are worldwide in scope, and the seventeenth and eighteenth centuries are well represented. Although
the geographic materials in the Kislak Collection are relatively few compared to the world-renowned geographic and cartographic holdings of the Library of Congress, these two collections complement and strengthen one another.

The most noteworthy geographic item in the Kislak Collection is Martin Waldseemüller’s 1516 Carta Marina, the earliest known published sea chart of the world. This one-of-a-kind 12-sheet woodcut is now reunited with Waldseemüller’s equally famous 1507 world map, the first map to include the name “America.” Bound together for nearly 500 years in the Schöner Sammelband before being removed, these two unique maps were not available to researchers until the Library acquired the latter in 2001. In addition, the Geography and Map Division holds Waldseemüller’s rare 1513 atlas. Collectively, these three landmark works contributed to major advances in both Renaissance geography and map printing.

The Kislak Collection’s seventeenth-century hand-drawn Aztec Techialoyan land record and the Geography and Map Division’s sixteenth-century land litigation map of Oztoticpac, a royal Aztec estate near present-day Mexico City, provide another uncommon research opportunity to examine and compare the work of two early indigenous American surveyors and mapmakers. Similarly, the collection’s eighteenth-century manuscript pilot guide of the Caribbean, Descripción de las costas y islas, and a manuscript plan of the Florida Coast and Key Biscayne complement related manuscript Spanish charts in the Geography and Map Division. Finally, the Geography and Map Division and the Library’s Lessing J. Rosenwald Collection hold variant impressions of the Kislak Collection’s rare maps and views of Florida and St. Augustine by Baptiste Boazio.

RALPH E. EHRENBERG
Chief Emeritus
Geography and Map Division
Library of Congress
The Schöner Sammelband

What is arguably one of the most important compilations of cartographic materials in the long history of mapping was discovered in 1901 by the Jesuit historian Father Josef Fischer, in the library of Prince von Waldburg zu Wolfegg-Waldegg at the Castle of Wolfegg, in Württemberg, Germany. The volume, now known as the Schöner Sammelband (Sammelbände are gatherings of related texts bound together), was assembled sometime after 1516 and contained the only surviving copies of Martin Waldseemüller’s 1507 Universalis cosmographiae, his 1516 Carta Marina Navigatoria (see entry 271), and the first printed celestial globe gores by the mathematician, alchemist, and globe-maker Johannes Schöner (1477–1547). Also originally included in the volume was a heavily annotated copy of a star chart of the Southern Hemisphere produced by Albrecht Dürer in 1515, now removed. Because the Sammelband contains the only surviving copies of two of Martin Waldseemüller’s most important works and because of its association with the early globes of Johannes Schöner, it is one of the most significant compilations of geographical information to survive from the early sixteenth century.

Schöner studied theology and mathematics at Erfurt, Germany, beginning sometime around 1494 and was called to fill the first position of professor of mathematics in Nuremberg at the gymnasium Aegidianum in 1526. He was an active astronomer and astrologer and many of his extant notebooks in the National Library of Austria are filled with astronomical tables and diagrams of horoscopes. While in Nuremberg he also published important texts of Renaissance astronomy by Regiomontanus and Bernard Walther.

Schöner produced some of the earliest globes that survive from the Renaissance and the cartographic literature that remains in his collection of books and manuscripts in the National Library of Austria (ONB) reflects his interest in keeping current with the latest level of geographic knowledge. It is therefore no surprise that he should have wanted to obtain a copy of the 1507 and 1516 world maps. As far as we know, Schöner’s earliest purchase of a book on the subject of cartography seems to have been a copy of the 1482 Ulm edition of Ptolemy’s Geographia. A note in Schöner’s hand in his copy of that volume explains that he purchased it on 16 October 1507 for about two florins. The remains of Schöner’s library are characterized by a great number of handwritten corrections and additions, most of which occur in the margins or on the backs of maps contained in the various editions of Ptolemy that he owned (Hessler 2007).

The Sammelband was bound together by Schöner sometime after 1516 in a way that is not unique for the books that are known to have been part of his library. Schöner bound his copies of the 1482 Ulm and the 1513 Strasbourg editions of Ptolemy’s Geographia in a way nearly identical to the Sammelband. The volumes are bound with heavy wooden covers connected by leather backs showing blind stamping. Schöner’s ex libris is found glued to the inside cover of all...
In the Sammelband and in the 1513 Ptolemy, Schöner used parts of vellum globe gores cut into strips from his 1515 globes to protect the maps from being pierced with binding twine. He also annotated many of the maps in all of the volumes with a series of red lines that form a coordinate grid over portions of them. The volumes were likely bound around the same date, but this must have occurred after the red lines had been drawn on them, as in their current state it would have been nearly impossible to draw the grids in situ.

The Terrestrial and Celestial Globe Gore Fragments

The discoverer of the Sammelband, Josef Fischer, removed the 1507 and 1516 world maps in order to produce a facsimile of them and in doing so recovered from the gutter of the binding fragments of a set of globe gores that belong to Schöner’s 1515 globe. There are only two other surviving examples of this globe, one owned by the Historisches Museum in Frankfurt am Main, and the other by the Herzogin Anna Amalia Bibliothek, Stiftung Weimar Klassik. The gore fragments were trimmed and glued onto gore outlines by Fischer and then rebound into the Sammelband when the 1507 and 1516 maps were replaced. The set of terrestrial fragments found in the Sammelband constitutes approximately 50 percent of the actual globe. Schöner’s 1515 globe depends heavily on Waldseemüller’s 1507 Universalis cosmographiae for much of its geographical information and many of the legends that appear on the 1515 globe gores are small paraphrases from the larger 1507 map. The globe goes much farther, however, in its description of the New World, in that it actually shows a complete passage around South America into the Pacific Ocean. A more complete description of the geography found on the gores can be found in the companion volume that Schöner wrote to accompany the globe, Luculentissima quaedam terrae totius descriptio.

Besides the terrestrial fragments, a second set of vellum gore fragments was found in the Sammelband. These are from Schöner’s celestial globes and represent a different edition of Schöner’s celestial gores than is found fully bound in the Sammelband. The fragments represent much less than half of the total globe. In contrast to the full paper gores described below, the celestial fragments show the equator of the earth projected onto the celestial sphere at an angle to the ecliptic. The gore fragments also show differences in the labeling of particular constellations such as Delphini, and show signs of print stereotyping.

The celestial gores found in the Sammelband are printed on paper and form a complete set of Schöner’s gores from 1517. The gores are the first known set of printed celestial gores and are a great improvement over other star charts of the period. Although Schöner’s interest focused mostly on geography in the early period of his life, we still can see in his extant manuscripts interest in the accurate determinations of stellar positions for the purpose of casting horoscopes. This interest is further established by the annotations that he made to the 1515 Stabius star chart by Albrecht Dürer that originally constituted part of the Sammelband. The Dürer...
The 1517 globe, called Solidi et sphaerici corporis sive globi astronomici canones usum et expeditam ejusdem exprimentes, was dedicated to the Bishop of Bamberg, Georg Schenk von Limberg, as were many of Schön’s works and letters.

Several parts of the Schön’s Sammelband have been removed over the course of its life, including the 1507 Universalis cosmographiae, now in the Library of Congress; an annotated Dürer star chart from 1515, still at Wolfegg Castle; and a manuscript drawing by Schön of sheet six of the 1516 Carta Marina, privately held by Jay Kislak. —John Hebler

chart contains several well-known errors that Schön corrected by annotating both the chart itself and his globe.

One of the most remarkable features of Schön’s celestial gores is the naming of several groups of stars in minor constellations that were unnamed on celestial charts. For example, the stars in the constellation Coma Berenices are usually shown on star charts of the period but went unnamed until Schön called them Trica (located just above Leo) on his globe gores. Schön has annotated the gores in red ink mostly over the constellations of Andromeda, Perseus, and Orion.

Johannes Schön, Celestial globe gore fragments, 1515.
269. SACRO BOSCO, IOANNES DE, FL. 1230
[Sphæra mundi]

Neuixis adolciuntibus [sic]: ad astronomam rempu. capesenda[m] aditu[m] (m)petra[n]tilo[us]; p(er) breui rectoq[ue] tramit a vulgari uestigio semoto. Venice: Erhardi Ratdolt Augustensis, 1485.

Sacro Bosco’s Sphæra Mundi is probably the most popular astronomical text ever written; originally printed at Ferrara in 1472, it was also the second to be printed. Although it did not advance astronomical knowledge of the period beyond that of the many Arab commentaries on Ptolemy, it was reprinted many times, with twenty-four editions appearing before 1500.

Little is known of Sacro Bosco himself. It is believed he was of English origin, but he unquestionably lived in the first half of the thirteenth century, serving as professor of astronomy at Paris, and it is known that he died in that city in 1256. He owed his reputation as an astronomer chiefly to De Sphæra Mundi, which was used at universities throughout Europe well into the early seventeenth century.

The copy in the Kislak collection presents more than the Sphæra Mundi; however, as it also includes a text by Peurbach, and the commentary of Regiomontanus, Disputationes contra Cremonensis. Waldseemüller and Ringmann knew the text of the Sphæra very well and they used it as a source for the astronomical parts found in their Cosmographiae Introductio. Ringmann’s teacher Jacques Lefèvre d’Etaples wrote a very influential commentary on the text that was published in Paris in 1495.

—John Hessler

270. WALDSEEMÜLLER, MARTIN, CA. 1470–1522?, AND MATTHIAS RINGMANN, 1482–1511

Cosmographiar introductio: cum quibusdam geometriae ac astronomiae principiis ad eam rem necessaries.
St. Dié: [Walter et Nikolaus Lud], April 1507.
E125.V6W15 1507A

Martin Waldseemüller was born in Freiburg, or nearby Wolfenweiler, somewhere around 1475, and died as one of the cathedral canons of St. Dié, probably at the beginning of 1522. Matthias Ringmann (1482–1511), an important member of Waldseemüller’s circle and his main collaborator, was born in the Alsace region of France around 1482, possibly studied astronomy and mathematics in Paris with Jacques Lefèvre.
The book was printed in two editions in 1507 in the small village of St. Dié, France, under the patronage of Duke René II of Lorraine, and few books of its size have generated as much interest and speculation. The cause for all the attention, both popular and scholarly, stems from the mention on the title page of two maps that appear to have originally constituted part of the book. One of the maps, described in Latin as a plano, is Martin Waldseemüller’s famous 1507 World Map, and the other, called a solido, was a printed globe gore of his design that is thought to be the first of its kind.

The Cosmographiae was meant to be a guidebook to the knowledge necessary to understand the 1507 World Map, a map that is arguably one of the most important created in the long history of cartography. Produced on twelve individual sheets that when placed together form a single wall map, the 1507 map shows for the first time the New World separated from Asia and reveals the existence of the Pacific Ocean. The map also displays the name America for the first time on any map, and represents the continents of North and South America with a shape that is geometrically similar in form to the outlines of the continents as we recognize them today. Waldseemüller and Ringmann describe in detail the features of the map and some of the sources for the geographic information that it contains.

—John Hessler
271. Waldseemüller, Martin, ca. 1470–1522?
Carta Marina Navigatoria Portugallen Navigationes Atque Tocius Cogniti Orbis Terræ Maris, [Saint-Dié-des Vosges, France?], 1516.

The only surviving copy of the 1516 world map, known as the Carta Marina, is made up of twelve woodcut sheets that are adorned with marginal ornamentation by an unknown artist. The printer, thought to be Johannes Gruninger, was based in Strasbourg and is also theorized by many scholars to have printed the 1507 map. The sheets fit together in three zones containing four plates each. The sheets of the Carta Marina possess the same crown-shaped watermark as is found on Waldseemüller’s 1507 Universalis cosmographiae and his 1513 Ptolemy, an atlas that was printed in Strasbourg by Johannes Schott. The size of the single sheets, including the margin, is 45.5 × 62 centimeters.

Woodcut lettering on the lower right gives attribution to Martin Waldseemüller (1470–1522?): Consumatum est in oppido S. Deodati compositione et digestione Martini Waldseemuller Ilacomi... The Carta Marina is dedicated to the Bishop of Toul, Hugo de Hassard, the same person to whom Ringmann’s Grammatica figurata, printed at St. Dié, is also dedicated.

The 1516 Carta Marina, unlike the 1507 map, which is projected according to Ptolemy, was designed as a portolan chart showing rhumb and wind lines coming from a series of compass roses scattered about the map. The map was originally printed without a well-defined coordinate grid in a form that has more in common to sailing charts than with other small-scale cosmographies. The coordinate grid system that one now finds in the margins of each sheet of the map was added by Schöner at the same time he drew the series of red lines that cover each of the sheets. Interestingly, Schöner appears to have laid the grid out in an evenly spaced fashion, not considering that the latitudinal and longitudinal spacing might vary. Schöner also appears to have added several place-names to the map.

In the large text block on the bottom right sheet of the map, Waldseemüller explains that this map was made using new sources and that it is in this respect unlike the 1507 map that was “printed in one-thousand copies.” It is not clear what Waldseemüller means here in that the 1516 map does not show what Waldseemüller describes as the “fourth part of the world” as an island, but rather as a small land mass much like on contemporary sailing charts like the Cantino and Caveri Planispheres. Waldseemüller may simply be telling us that this map is not based on the Geographia of Ptolemy, but rather on newer information unknown to today’s scholars. Unlike the 1507 map, Waldseemüller does cite several of his sources on the map itself, including the accounts of Lodovico di Varthema and an Italian travel treatise entitled Paesi novamente trovati.

—John Hessler
Chapter IV: The New Geography / The Sixteenth Century

272. Bordon, Benedetto, 1450–1530

273. Enciso, Martin Fernández de, d. 1525
Suma de geographia [sic] trata de todas las partidas y provincias del mundo, en especial delas Indias y Tierra Nueva. Seuilla: Andres de Burgos, 1546.

274. Stoeffler, Johann, 1452–1531
Elucidatio fabricae ususque astrolabii. Lutetiae: Gulielmum Cauellat, 1553.

275. Chaves, Geronimo, 1523–1574
Chronografía ó repertorio de los tiempos, el más copioso y precise que hasta ahora ha salido d' luz. Sevilla: J. Gutierrez, 1566.

276. Girava, Gerónimo, d. 1556
[Dos libros de cosmographia]
La cosmographia y geographia del S. Hieronimo Girava, Tarragones: en qual se contiene la descripcion de todo el mundo y de sus partes, y particularmente de las Indias y Tierra Nueva. Venetia: Iordan Zileti, 1570.

277. Bordini, Francesco, 1535–1591
Quaesitorum et responsorum mathematicae disciplinae ad totius vniuersi cognitum exspectaturn chilias. Bononiae: Alexandre Benattii, 1573.

278. Porcacchi, Thomaso, ca. 1530–1585?

279. Boazio, Baptista, fl. 1588–1606

The Boazio maps are historically important for understanding Sir Francis Drake’s (1540?–1598) activities. In 1585 Drake’s fleet of twenty-two ships sailed from England to Ribeira Grande in the Cape Verde Islands, off the coast of West Africa. The voyage map shows Europe, western Africa, northern South America, and eastern North America, and the four bird’s-eye views are the first printed views of the cities of Santiago, in the Cape Verde Islands, Santo Domingo, Cartagena, and St. Augustine, Florida. The views include detailed graphic accounts of the English attacks on the Spanish settlements and fascinating details—animals, flags, crests, and compasses—are used to decorate the cartography.

The lead voyage map, charting the round trip from Portsmouth, England, is captioned in English:

The Famouse West Indian voyage made by the Englishe fleete of 23 shippes and Barkes wherein weare gotten the Townes of S.t Iago? S:to Domingo, Cartagena and S:t Augvstines the same beinge begun from Plimmoth in
the Moneth of September 1585 and ended at Portesmouth in Iulie 1586 the whole course of the saide Viadige beinge plainlie described by the pricked line Newlie come forth by Baptista B.

The accompanying four views (see pages 110–111) are in Latin.

Santiago, Cape Verde
Drake’s fleet left Plymouth on September 14, 1585, sailing first down the Spanish coast to Bayonne and Vigo and thence to the town of Santiago in the Cape Verde Islands off the coast of West Africa on November 17th. Drake looted and burned the town before crossing the Atlantic.

Santo Domingo (Dominican Republic)
On New Year’s Day 1586 Drake reached Santo Domingo on Hispaniola Island (present-day Haiti and the Dominican Republic). He captured and plundered the town, then demanded, and received, a ransom of 25,000 ducats. This image shows the English fleet in the bay and the infantry battalions attacking the town.

Cartagena (Colombia)
The fleet sailed to Cartagena, situated on the South American coast, and captured the town on February 9th. Drake demanded and received a ransom of 110,000 ducats. This view of Cartagena depicts the English infantry marching on the city. The fleet remained on the coast for six weeks of repair before sailing around Cuba, through the Florida Straits, and on to St. Augustine.

St. Augustine, Florida
The view of St. Augustine is the earliest engraving of any locality in the United States. The English fleet lies at anchor, the infantry troops having disembarked to attack the Spanish settlement on May 28 and 29, 1586.

Drake then sailed to Roanoke Island, off the Virginia coast, to evacuate the survivors of the failed English colony. The plan also includes an illustration of a dolphin that Boazio very likely copied from the drawings of English America by John White, a member of the 1585 Raleigh settlement of Virginia. The artist John White and the scientist Thomas Harriot were part of a scientific expedition sent to gather information about the New World for the English. They visited Indian villages and mapped the area as far north as the Chesapeake Bay.
280. Wytfliet, Corneille
Descriptionis Ptolemaicae augmentum. Lovanii: Gerardi Ruyii, 1598.
G110.W9 1598

281. Techialoyan Land Records
Aztec, seventeenth century
Amate (fig-tree bark) paper
A. San Cristóbal Tezcalucan and Santa María Chichicaspa, México.
Manuscript including map
B. San Juan Tolcayuca, México.
Manuscript with companion map
Map: 65 × 116 cm. (25½ × 45¾ in.)
C. Santa María Itztacapan, México.
Manuscript
Kislak ms number pending

Painted on native paper with text in Nahuatl, the language of the Aztecs, these seventeenth-century Techialoyan manuscripts are three of only a handful of such cartographic documents (for a more complete discussion, see Techialoyan Manuscripts in Chapter VIII).

As Spanish settlers increased in number and amassed estates over the colonial period of Mexican history, it became increasingly important for indigenous communities to assert their claims to territorial holdings. Maps were made to help local people know and defend their town’s boundaries, and some were submitted to the courts during land disputes. By the late seventeenth century, tensions had mounted over the competition for ever scarcer resources. It was rare for indigenous communities to have Spanish-language land titles they could present to colonial authorities, so they resorted to a tradition dating from pre-Columbian times of writing and painting local histories, sometimes with genealogical and cartographic elements. The Tolcayuca map features the indigenous community of San Juan Tolcayuca, located in the modern Mexican state of Hidalgo, northeast of Mexico City. It has a companion, a more text-based and book-like manuscript, which may hold clues to the fuller purpose and origin of this pair of documents.

Indigenous cartographic conventions differ considerably from those of Europe in both their conception of social function and their artistic execution. In the Tolcayuca map, the artist constructs the image from around each of the document’s four edges. To view the various parts of the map correctly, one must rotate it. Typical pre-Hispanic iconography includes footprints across the landscape, apparently denoting a survey of the town’s limits, taking in what appear to be ancient mounds, possibly pyramids, as well as bell-shaped hills (tepêl).

The focal point articulates a fascinating scene of human activity on the landscape: an open-air meeting held in front of the community church. The meeting features a table, where a friar and an indigenous nobleman sit. In attendance is a large group of local women, a testimony to their active participation in events of interest to town survival and defense, such as a boundary survey. Normally, the town titles would be read aloud at such events, helping to fortify social and cultural memory relating to the legitimacy of the town. —Stephanie Wood
LATER CARTOGRAPHY AND GEOGRAPHY

282. **Hondius, Jodocus, 1563–1612**

Virginiae item et Floridae, Americae Provinciarum.
[Amsterdam: Jodocus Hondius, 1613?]
1 map. Hand colored. 33 × 47 cm. (12 7/8 × 18 1/8 in.)
Scale ca. 1:3,000,000.
Appears in Gerard Mercator’s _Atlas sive Cosmographicae._
G3870 1613.h6

283. **Hondius, Jodocus, 1563–1612**

Insvlarvm Hispaniolae et Cvbae cum insulis circum jacentibus.
[s.l.: s.n., 1656?]
1 map. Hand colored. 40 × 52 cm. (15 3/4 × 20 3/8 in.)
Scale ca. 1:4,000,000.
Shows southern Florida, the Bahamas, Cuba, Jamaica, and Hispaniola.
g4930 1656.i5

284. **Clüver, Philipp, 1580–1622**

Introductionis in universam geographiam.
Rhenum: Guillielmum Broedelet, 1701.
First published in Leiden, 1624.
g120.c62 1701

285. **Bonito Gonzales, Alexandro**

 Autograph manuscript, signed: Sailing instructions for the West Indies and part of South America, made for the use of Don Alejandro Bonito Gonzales, second mate of the ship Comercio. Spain, ca. 1720s.
153 pages. Includes charts of coastal mountains (pp. 132–135) and references to Puerto Rico, Cuba, Honduras, etc. In Spanish.
kislak ms 1020

286. **Keulen, Gerard van**

Nieuwe groote en seer curieuse paskaart van geheel Westindien.
Amsterdam: Gerard van Keulen, [1728?]
1 map. Vellum. 59 × 100 cm. (23 1/4 × 39 3/8 in.)
Scale ca. 1:5,500,000.
Relief shown pictorially. Depths shown by soundings.
g4391.p5 1728.k4 atlas

287. **Liguera, Juan de**

Autograph manuscript: Plano de la costa de la Florida desde Cayo B[i]scaino hasta el ro. de Sn. Agustin de la Florida levantado y delineado por Juan De Liguera Antayo, piloto de la real armada. 1742.
1 manuscript map. Colored; pen-and-ink with colored wash. 49 × 67 cm. (19 3/4 × 26 3/4 in.) Scale ca. 1:700,000.
g3932.c6 1742.l5

288. **Bellin, Jacques Nicolas, 1703–1772**

Description geographique des isles Antillles.
Paris: Didot, 1758.
F2131.B44

289. **American Gazetteer. Italian**

Il Gazettiere Americane.
Livorno: Marco Coltellini, 1763.
3 volumes.
E14.A54

290. **De Brahm, John Gerar Williams, 1717–ca. 1799**

The Atlantic Pilot.
g2807.n59.p5d4 1772

This description of the Gulf Stream’s course through the Florida Keys and the Bahama Straits appeared at a time when transatlantic trading ships took advantage of its power, even if they were not fully aware of its full dimensions. In addition to describing the circulation of the Gulf Stream and theorizing upon its causes, de Brahm’s observations led him to speculate upon the role of the current in modifying Florida’s coast. The work is based on observations he carried out during an eighteen-week expedition in 1765 along the Florida coast and in the Gulf of Mexico, and during his crossing to England in 1771. His work provided a starting point for all future investigations regarding the shape of the peninsula and the circulation of the famous Atlantic current.

291. **Autograph manuscript:** Descripcion de las costas ylas y vajos desde Sn. Martin una de las Yslas de Barlovento hasta la Havana, 1777 (see page 116 for image).
Manuscript atlas. 61 leaves; 154 pages.
15 colored maps (1 folded). In Spanish.
Pen-and-ink, watercolor, and pencil. No scale.
Depths shown by soundings.
Pilot guide showing navigation from the Leeward Islands to Havana and then to Vera Cruz, Mexico, through maps, sections, and text. Text also describes routes to and from Cadiz, Spain.
g1536.p5 1777.d4

292. **Zatta, Antonio, fl. 1757–1797**

Le Colonie Unite dell’ America Settentr’le.
Venezia: Antonio Zatta, 1778.
13 maps on 12 sheets.
g3300s2200.z31

293. **Neptune Americo-Septentrional**

[Paris: Dépôt des cartes et plans de la marine, 1778–1780.]
1 atlas. 31 leaves of plates. 26 maps.
A collection of maps issued or reissued by the Dépôt général de la marine for the use of the French navy during the American Revolutionary War.
g1106.p5f7 1780

294. **Neptune de l’Amérique méridional**

[Paris: Dépôt des cartes et plans de la marine, 1785–1823.]
1 atlas. 79 leaves of plates. 47 maps.
A collection of maps issued or reissued by the Dépôt général de la marine, many drawn up by the Dépôt des cartes et plans de la marine, some under the direction of J. N. Bellin, between 1785 and 1823.
g1701.p5n5 1823
295. Fenning, Daniel
A New and Easy Guide to the Use of the Globes.
London: S. Crowder, 1785.
GA12.F3 1785

296. Alcedo, Antonio de, 1735–1812
[English translation of Diccionario geográfico-historico de las Indias Occidentales o América]
The Geographical and Historical Dictionary of America and the West Indies.
London: James Carpenter, 1812–1815.
5 volumes. Supplemented by Atlas to Thompson’s Alcedo.
E14.A36

297. Spain. Dirección de Trabajos Hidrográficos
Portulano de la America Setentrional.
Madrid: Dirección de Trabajos Hidrográficos, [1818].
Shows select ports of the Greater and Lesser Antilles, Mexican gulf coast, Central American gulf coast, Colombian gulf coast, Texas gulf coast, and Florida.
First published in Madrid, 1809.
G1536.P55S6 1818

298. Autograph manuscript: The plan of the bay of San Agustin de la Floridæ, [after 1817?].
Manuscript map. Pen and ink and watercolor. 26 × 48 cm. (10¼ × 18¾ in.) Scale information not given. Oriented with north to the right; relief shown pictorially; depths shown by soundings. Geographic features labeled in Spanish.
Watermark: J. Honig & Zoonen.
G3934.S2P55 1817 .P5
This map is quite similar to the D. Francisco Corazar map of 1817 [Servicio Historicco Militar]. The redoubts are the same shape and the configuration of the two looping meanders and soundings for the harbor of the river are the same (but lack the Hornwork). The design of the Castillo and the configuration of the roads heading north out of town are almost identical. It is possible, therefore, that this is an English or American copy of Corazar’s work, possibly made in aid of an attempted filibustering effort, or maybe as part of the preparation for the official cession and transfer of Florida that commenced in 1819. One strange error: on the right hand side of the map, a section of land between the rivers is mislabeled “Anastasia Island.”
—James Cusick
299. Arrowsmith, Aaron, 1750–1823
[Atlas to Thompson’s Alcedo.] [London?: s.n., 1825?]
G1100.A7 1825

300. [Villa, Francisco, 1877–1923]
15 manuscript maps. Drawn by the “Comision de Ingenieros de la Sria. de Hacienda” of various estates in Chihuahua to be divided among the soldiers in Pancho Villa’s army. July 1921 to April 1922. Various sizes. Ink on waxed linen, some color. In Spanish.
Rancho “Arroyo Ancho” Tierras de Riego de la . . . , 1921
Rancho “Arroyo Ancho” Tierras de Temporal de la . . . , 1921
Plano del Fraccionamiento del Rancho . . . , 1921
Rancho “Los Torreones” Tierras de Labor . . . , 1921
Plano del Fraccionamiento del Rancho . . . , 1921
Plano de Las Tierras de Riego del Rancho . . . , 1921
Rancho “La Cierreguila” Hacienda San Isidro . . . , 1921

Plano de las Tierras de Riego del Rancho . . . , 1921
Plano del Fraccionamiento de las Tierras de . . . , 1921
Plano de las Tierras de Riego de la Hacienda . . . , 1921
Plano del Fraccionamiento de las Tierras de . . . , 1922
Plano del Fraccionamiento de las Tierras de . . . , 1922
Plano del Fraccionamiento de las Tierras de . . . , 1921
Plano del Fraccionamiento de las Tierras de . . . , 1921
Plano General de la Hacienda “La Carretena” . . . , 1921
G4461.G46

301. Teixeira, Luís, 16th cent.
G3200 SVAR.T4 1993